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A detailed comparison of the one-dimensional paracrystalline and perturbed

lattice models of disordered crystals, and their diffraction, is made. If

noncumulative (thermal) disorder is added to the paracrystalline model, then

the two models and their diffraction patterns are similar but not identical

because of their different intersite statistics. However, they are identical in the

limiting cases of either strong or weak correlations. Calculation of diffraction

patterns shows that, with an appropriate choice of parameters, the two models

give essentially identical diffraction for small crystallites and very similar

diffraction for larger crystallites. An empirical relationship is derived between

parameters of the two models such that they give similar diffraction patterns.

1. Introduction

Analysis of X-ray diffraction patterns from disordered crys-

talline materials is an important means of analyzing disorder

in such systems (Welberry, 1985; Stroud & Millane, 1995b).

Performing such an analysis requires both a statistical model

of the disordered system and a method for calculating

diffraction patterns based on the model. With these two

components, one is able, at least in principle, to process

diffraction data from a particular specimen to quantitatively

characterize the kind and degree of disorder by estimating

parameters of the statistical model.

Disordered crystalline systems can be conveniently

described in terms of lattice disorder and substitution disorder.

Substitution disorder consists of variations in the units located

at each site of the crystal lattice. The variations could be due to

the presence of different atoms or molecules at different sites,

or to a single type of molecule adopting different orientations.

Lattice disorder consists of variations in the positions of the

lattice sites away from those of an ordered periodic lattice.

Clearly, substitution disorder almost always introduces some

degree of lattice disorder, although lattice disorder can be

present in the absence of substitution disorder. We consider

here only lattice disorder. The diffraction pattern from such a

system is then equal to the Fourier transform of the molecule,

modulated by the Fourier transform (or diffraction pattern) of

the distorted lattice (the interference function). The distorted

crystalline system and its diffraction properties are therefore

characterized by the distorted lattice. In this paper, we

compare the two primary models of distorted lattices, the

paracrystal and the perturbed lattice, and their diffraction

patterns.

The simplest model of lattice disorder involves independent

distortions of the lattice sites away from those of a regular

periodic lattice and is referred to variously as thermal

disorder, disorder of the ®rst kind (Hosemann & Bagchi, 1962)

or uncorrelated disorder (Stroud & Millane, 1996). Although

this model of disorder is useful in many situations (Millane &

Stroud, 1991; Stroud & Millane, 1995b), it does not incor-

porate the dependence between distortions at neighboring

lattice sites that are often characteristic, at least to some

degree, of close-packed systems. To include dependence

between the distortions at neighboring sites, the distortions

must be correlated. The diffraction pattern from a material

with uncorrelated disorder is equal to the sum of two

components; one consisting of sharp Bragg re¯ections char-

acteristic of the underlying average undistorted lattice and a

continuous component resulting from the disorder (Stroud &

Millane, 1995a). In the case of correlated disorder however,

the diffraction cannot be written as the sum of two such

components and is characterized by peaks that broaden with

increasing scattering angle and merge into the continuous

diffraction (Stroud & Millane, 1996).

Although real systems are generally three dimensional,

construction of general models of disorder in more than one

dimension is plagued by a number of fundamental dif®culties

(Welberry et al., 1980; Welberry, 1985; Stroud & Millane, 1996).

Disordered materials are therefore often studied by analyzing

the diffraction along particular directions in reciprocal space

and the diffraction interpreted in terms of a one-dimensional

model to characterize the disorder in the corresponding

directions in real space. This is an approximate approach but is

sometimes suf®ciently accurate in practice. One-dimensional

models of disorder, and their resulting diffraction patterns, are

therefore of utility in many applications. Furthermore, systems

such as polymer and layered structures in which the disorder is

fundamentally one dimensional can be accurately analyzed

using a one-dimensional model (Hendricks & Teller, 1942;
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Barakat, 1987; Inouye, 1994). For example, Egelman &

DeRosier (1982) and Mu et al. (1997) have used a one-

dimensional model to study cumulative angular disorder in

actin and sickle-cell hemoglobin ®bers, respectively. Biswas &

Blackwell (1988) have used a one-dimensional model to

calculate ®ber diffraction patterns from random copolymers.

One-dimensional models are also used to analyze X-ray peak

shapes to determine disorder and crystallite size of crystalline

polymers (Hall & Somashekar, 1991; Somashekar & Soma-

shekarappa, 1997). One-dimensional models of disorder are

therefore of fundamental and practical interest and are the

subject of this paper.

Two principal models have been used to describe disor-

dered crystalline materials: the paracrystal and the perturbed

lattice. The paracrystal model was developed by Hosemann

and co-workers (Hosemann & Bagchi, 1962) and has been

widely used to analyze diffraction from disordered materials

such as polymers, glasses and alloys (Hosemann & Hindeleh,

1995). Development of the paracrystal proceeds from the

intuitive viewpoint that molecules (or atoms) in a growing

crystal are positioned relative to their predecessors. Starting at

a ®xed point, sites are added to the lattice in succession by

displacing each relative to its predecessor by a random

distance. If the distances are normally distributed, then the

average intensity diffracted by the random lattice is easily

calculated. The perturbed lattice, rather than describing a

distorted lattice in terms of the statistics of the relative posi-

tions of its sites, describes the lattice in terms of the dis-

placements of its sites away from those of a periodic reference

lattice (Welberry et al., 1980; Welberry, 1985; Stroud &

Millane, 1996). This produces a rather general model of

disorder if one allows the displacements at neighboring lattice

sites to be correlated with each other.

Both the paracrystal and the perturbed lattice models are

well de®ned in one dimension but are well de®ned only under

restricted conditions in more than one dimension (Welberry,

1985). In particular, in a two- or three-dimensional lattice

there are many more cell edges (with which the random

variables of the paracrystal are associated) than lattice points,

implying that conditional dependencies must be imposed on

the distributions (Hammersley, 1967). The perturbed lattice

model avoids this dif®cultly by working with the positions of

the lattice points rather than with the vectors between them.

In multiple dimensions, the perturbed lattice model is more

¯exible and can be used to represent a wider variety of

distorted lattices than the paracrystal while maintaining

stationary statistics, although a completely general model is

still dif®cult to construct (Welberry, 1985).

Since both models are well de®ned in one dimension and

since the paracrystal has a long history of applications, it is of

interest to compare the two models and their diffraction

patterns. Welberry et al. (1980) have compared the one-

dimensional (as well as the two-dimensional) paracrystal and

perturbed lattice models. They demonstrate that as the

distortions at adjacent sites in a one-dimensional perturbed

lattice become highly correlated, and the single-site variances

increase in an appropriate way, the perturbed lattice model

approaches the paracrystalline model. A more detailed and

complete comparison of the two models is presented here. We

show that, if the one-dimensional paracrystal is generalized by

adding a thermal disorder component, it has similar char-

acteristics to the perturbed lattice, and the statistics of the two

models and their diffraction patterns are studied in detail. The

®nite one-dimensional paracrystalline and perturbed lattice

models and their diffraction patterns are described in the next

two sections. The statistics and diffraction patterns from the

two models are compared in the following section, and the

results discussed in the ®nal section.

2. The paracrystal

The paracrystalline model of disorder was ®rst described by

Hosemann and co-workers (Hosemann, 1950; Hosemann &

Bagchi, 1962) and has since been quite widely used as a model

of disorder, particularly for polymers and metals. The general

paracrystalline model in more than one dimension suffers

from a number of dif®culties with consistency of the statistics

and has therefore been the subject of some controversy

(BraÈmer, 1975). However, the model is well de®ned in one

dimension, which is the case with which we are concerned

here. In the paracrystal model, a distorted lattice is described

in terms of random displacements of a lattice site from its

neighboring site. The model incorporates the intuitively

satisfying concept of a disordered lattice being built sequen-

tially, one lattice point at a time. The distortions of the lattice

are therefore `cumulative', and the disorder is sometimes

referred to as disorder of the second kind (Hosemann &

Bagchi, 1962). The diffraction from a paracrystal has Bragg

re¯ections that increase in width with increasing scattering

angle, a phenomenon that is often observed but is not

accounted for by models of uncorrelated disorder.

The one-dimensional paracrystal usually incorporates only

independent variations in the distances between adjacent sites.

For reasons that will become apparent later, we consider a

more general model that also includes independent distortions

in the coordinates of the sites. The model can then be thought

of as a pure paracrystal with superimposed thermal disorder.

We refer to this as the generalized paracrystal. Let xj be the

coordinate of the jth site of a distorted lattice with N sites

labeled j � 0; 1; . . . ;N ÿ 1 and average lattice spacing a. The

coordinates of a generalized paracrystal are given by

xj � ja� dnc
j �

Pj

k�0

d
pc
k ; �1�

where the d
pc
k are the random `paracrystalline', or cumulative,

displacements, the dnc
j are the `noncumulative' (thermal)

displacements and we take d
pc
0 � 0. The d

pc
k and dnc

j are

independent, and each are uncorrelated zero-mean normally

distributed random variables, with variances �2
pc and �2

nc,

respectively.

The diffraction by a lattice is given by

F�u� � PNÿ1

j�0

exp�i2�uxj�; �2�



where u is the continuous coordinate in reciprocal space. The

observed diffracted intensity I�u� is given by the diffracted

intensity averaged over all realizations of the lattice, or over

all xj, i.e.

I�u� � hjF�u�j2i � PNÿ1

j�0

PNÿ1

k�0

hexp�i2�u�xj ÿ xk��i: �3�

Using (1) and (3) gives the intensity diffracted by the para-

crystal as

Ipc�u� �
PNÿ1

j�0

PNÿ1

k�0

exp�i2�ua� jÿ k��

� exp i2�u
Pj

l�0

d
pc
l ÿ

Pk
l�0

d
pc
l

� �� �� �
� hexp�i2�u�dnc

j ÿ dnc
k ��i: �4�

The quantity �dnc
j ÿ dnc

k � is normally distributed with zero

mean and variance 2�2
nc, so that (Papoulis, 1991)

hexp�i2�u�dnc
j ÿ dnc

k ��i � exp�ÿ4�2u2�2
nc�: �5�

The ®rst average in (4) needs to be handled more carefully

since some of the d
pc
l are not independent. Evaluating the

average (Appendix A) and using (4), (5) and (33) gives the

intensity diffracted by the ®nite generalized paracrystal as

Ipc�u� � N � 2
PNÿ1

j�1

�N ÿ j� exp�ÿ2�2u2�2�2
nc � �2

pc j��

� cos�2�uaj�: �6�
The summation in (6) can be evaluated in closed form for

N!1 (Hosemann & Bagchi, 1962) or for ®nite N (Mu,

1998). For our purposes however, it is useful to retain the form

(6) because of its similarity to the expression for diffraction by

the perturbed lattice derived in the next section.

If there is no paracrystalline disorder ��pc � 0�, then (6) can

be written in the form

Ipc�u� � N�1ÿ exp�ÿ4�2u2�2
nc�� � exp�ÿ4�2u2�2

nc�

� PNÿ1

j�0

"j�N ÿ j� cos�2�uaj�; �7�

where "j � 1 for j � 0 and "j � 2 for j> 0,

i.e. the intensity is the sum of a continuous

component that increases with increasing u

and a Bragg component (the interference

function of the ®nite unperturbed lattice)

that decreases with increasing u. These are

the characteristics of uncorrelated, or

thermal, disorder.

Diffraction patterns from a one-dimen-

sional generalized paracrystal for N � 10 are

calculated using (6) and shown in Fig. 1. All

diffraction patterns are scaled to the ®rst

peak. We take a � 1 for all the examples so

that the variances are normalized values.

Diffraction by the usual paracrystal (no

noncumulative disorder) is shown in Fig. 1(a)

for different degrees of disorder (different

�pc). For small disorder, the diffraction

pattern is dominated by Bragg peaks that

broaden gradually with increasing scattering

angle (top), and as the disorder (�pc)

increases the peaks broaden more rapidly

with increasing scattering angle and merge

with a continuous background that increases

to an asymptotic value at high scattering

angle. As the disorder increases, the angle

out to which sharp peaks occur decreases. At

no point does the diffraction pattern

completely separate into a sum of Bragg and

continuous components. Diffraction from a

generalized paracrystal with noncumulative

disorder is shown in Fig. 1(b). The para-

crystalline disorder is ®xed at �pc � 0:05, and

the noncumulative disorder increases from

�nc � 0 to 0:1 from the top of the ®gure to

the bottom. As the noncumulative disorder

increases, the peaks narrow at their bases
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Figure 1
Diffraction patterns from generalized paracrystalline lattices for N � 10 for (a) no
noncumulative disorder (�nc � 0) and (b) with noncumulative disorder (with �pc � 0:05),
for the values of �pc and �nc shown.
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and, when the noncumulative disorder dominates the para-

crystalline disorder, the diffraction pattern approaches one of

uncorrelated disorder, i.e. a sharp Bragg component on a

continuous background (bottom of the ®gure). Since the

paracrystalline disorder is constant and the noncumulative

disorder increases, the total disorder increases and the scat-

tering angle out to which peaks appear decreases from the top

of the ®gure to the bottom.

3. The perturbed lattice

The perturbed lattice model of a disordered crystal has been

studied by Welberry & Galbraith (1973) and Welberry et al.

(1980). In this model, a distorted lattice is described in terms

of the correlated displacements of its sites away from those of

a periodic reference lattice rather than in terms of displace-

ments between adjacent sites as in the case of the paracrystal

(Welberry et al., 1980; Welberry, 1985; Stroud & Millane, 1996).

This produces a rather general model of disorder. It is

generally assumed that the statistics of the lattice are

stationary and that only random variables at neighboring sites

interact. A one-dimensional perturbed lattice with only

nearest-neighbor interactions can be described as a simple

Markov chain (Welberry et al., 1980).

The coordinate of the jth site of a perturbed lattice is given

by

xj � ja� dj; �8�
where the dj are zero-mean random displacements and we

take x0 � d0 � 0. We take the dj to be jointly normal with only

nearest-neighbor interactions so the statistics of the lattice are

described by the joint density

P�dj; djÿ1� �
1

2��2
pl�1ÿ �2�1=2

exp ÿ d2
j ÿ 2�djdjÿ1 � d2

jÿ1

2�2
pl�1ÿ �2�

" #
;

�9�
where the variance and correlation coef®cient are

�2
pl � hd2

j i and � � hdjdjÿ1i=�2
pl; �10�

h. . .i denotes the ensemble average and the subscript pl

denotes the `perturbed lattice'. Since the perturbed lattice is a

Gaussian Markov chain, the correlation �k between dj and

dj�k is [Welberry et al. (1980); Appendix B]

�k � �jkj; �11�
and the joint density of dj and dj�k is identical to (9) with �
replaced by �jkj.

Using (3) and (8) gives the intensity diffracted by the

perturbed lattice as

Ipl�u� �
PNÿ1

j�0

PNÿ1

k�0

exp�i2�ua� jÿ k��hexp�i2�u�dj ÿ dk��i: �12�

The quantity �dj ÿ dk� is normally distributed with zero mean

and variance

h�dj ÿ dk�2i � 2�2
pl ÿ 2�2

pl�jjÿkj � 2�2
pl�1ÿ �jjÿkj�;

so that

Ipl�u� �
PNÿ1

j�0

PNÿ1

k�0

exp�i2�ua� jÿ k�� exp�ÿ4�2u2�2
pl�1ÿ �jjÿkj��:

�13�
The terms with equal � jÿ k� in (13) can be combined so that

Ipl�u� � N � 2
PNÿ1

j�1

�N ÿ j� exp�ÿ4�2u2�2
pl�1ÿ � j�� cos�2�uaj�:

�14�
If the distortions are uncorrelated �� � 0�, the diffracted

intensity can be written in the same form as (7) with �nc

replaced by �pl. The two models are therefore identical for

�pc � 0 and � � 0.

Diffraction patterns for one-dimensional perturbed lattices

for N � 10 are calculated using (14) and shown in Fig. 2.

Diffraction from lattices with only uncorrelated disorder

�� � 0� are shown in Fig. 2(a) for small disorder at the top and

�pl increasing down the ®gure. Since the disorder is uncorre-

lated, the diffraction separates into a sharp Bragg component

on a continuous background and the widths of the Bragg

re¯ections are independent of scattering angle. The ampli-

tudes of the Bragg re¯ections decrease more rapidly with

scattering angle as the disorder increases and there is an

associated increase in the amplitude of the continuous

component. Diffraction patterns from a perturbed lattice with

correlated disorder and ®xed �pl are shown in Fig. 2(b), the

degree of correlation increasing from � � 0 at the top to

� � 0:9 at the bottom of the ®gure. As the correlation

increases, the Bragg peaks broaden with increasing scattering

angle and merge into the continuous background at high

angle. As the correlation coef®cient increases, the lattice

becomes less disordered and the diffraction peaks persist out

to higher scattering angle.

4. Comparison of the paracrystal and the perturbed
lattice

4.1. Statistics

The generalized paracrystal and the perturbed lattice are

different statistical models of a disordered lattice. However,

both models are stationary Gaussian processes and can

therefore be described by the variances of the kth-nearest-

neighbor intersite distances �xj�k ÿ xj� for all k. Referring to

(1), (8) and (11) shows that these variances,

�2
k � h�xj�k ÿ xjÿka�2i, are given by

�pc 2
k � jkj�2

pc � 2�2
nc �15�

for the generalized paracrystal and

�pl 2
k � 2�2

pl�1ÿ �jkj� �16�
for the perturbed lattice. Note that the largest value of k is

N ÿ 1. Equations (15) and (16) highlight the difference

between the two models. The variance increases linearly with

the number of intervening sites for the generalized para-

crystal, whereas for the perturbed lattice it asymptotically



approaches 2�2
pl. These relationships are shown in Fig. 3. Two

limiting cases correspond to

�pc � 0) �pc 2
k � 2�2

nc

� � 0) �pl 2
k � 2�2

pl

�17�

for uncorrelated disorder (Fig. 3b) and

�nc � 0) �pc 2
k � jkj�2

pc

�! 1) �pl 2
k ! 2jkj�2

pl�1ÿ �� for small k
�18�

for highly correlated disorder (Fig. 3c). For uncorrelated

disorder, the two models are identical as shown in Fig. 3(b).

For highly correlated disorder, the perturbed lattice becomes

more ordered as � approaches unity unless �pl is increased.

This is illustrated in Fig. 3(c) for which � � 0:995, �pl � 10�pc

and �nc � 0. In the limit �! 1, �pl 2
k depends linearly on k, the

same as for the paracrystal with no noncumulative (thermal)

disorder (Fig. 3c), for small k. Note that k is bounded by

N ÿ 1, so that the similarity of the two models is expected to

decrease for larger N, for which larger values of k occur.

The different forms of the k dependence of �2
k for the two

models means that parameters cannot be chosen to make the

two models identical, i.e. it is not possible to obtain �pc
k � �pl

k

for all k. However, both models incorporate similar char-

acteristics and so are expected to exhibit qualitatively similar

behavior (as evidenced by the diffraction patterns shown in

Figs. 1 and 2) for appropriate choices of the parameters. It is

convenient to denote the standard deviations of the nearest-

neighbor intersite distances by �2
pc � �pc 2

1 and �2
pl � �pl 2

1 , so

that

�2
pc � �2

pc � 2�2
nc �19�

and

�2
pl � 2�2

pl�1ÿ ��; �20�
and to de®ne R by

R � �2
nc=�

2
pc; �21�

i.e. the noncumulative variance relative to the paracrystalline

variance for the generalized paracrystal.

We now investigate relationships between

the parameters of the two models that tend

to make them similar. From Fig. 3, this will

occur when the differences between �pc 2
k and

�pl 2
k , averaged over 1 � k � N ÿ 1, are

minimized. A direct minimization does not

lead to a tractable result, but a simple in-

dicative relationship is obtained using the

following approximate approach. We ®rst

apply the constraint that the variances of the

distances between nearest neighbors are the

same for both models, i.e.

�pc � �pl � �: �22�
Referring to Fig. 3(d), we write

�pc 2
Nÿ1 � �2 � l � �2 � ��2�2

pl ÿ �2�; �23�
where l is shown in Fig. 3(d). The value of �
that minimizes the difference between �pc 2

k

and �pl 2
k summed over k will in general

depend on N, but inspection of Fig. 3(d)

shows that it satis®es �< 2. Using (15) and

(19)±(22) to rewrite (23) in terms of � and R

gives

� � N ÿ 2

N ÿ 2� �� 2�R
: �24�

For N � 1 and R� 1, since �< 2, (24) can

be approximated by

� � N

N � 2�R
: �25�

Since the form of � is unknown, (24) and

(25) cannot be used directly to determine

values of � and R that make the two models

similar. However, the functional form

suggested by (25) is useful for developing an
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Figure 2
Diffraction patterns from perturbed lattices for N � 10 for (a) uncorrelated (� � 0) and (b)
correlated (with �pl � 0:05) disorder, for the values of �pl and � shown.
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empirical relationship between � and R such that the two

models give similar diffraction patterns, as is shown in x4.2.

4.2. Diffraction patterns

Equations (6) and (14) for diffraction by the generalized

paracrystal and the perturbed lattice cannot be compared

directly because of the different j dependence of the argu-

ments of the exponential terms in the summations. The nature

of the diffraction pattern from the generalized paracrystal

depends on the parameters �pc and �nc, and that from the

perturbed lattice on �pl and � (for ®xed N in both cases).

Reference to Figs. 1 and 2 shows that these parameters affect

diffraction by the two models differently. However, the

intensity diffracted from an array of points depends only on

the relative positions of the points �xj ÿ xk� [equation (2)]. We

have shown elsewhere (Stroud & Millane, 1996) that, for ®xed

�2 � h�xj ÿ xjÿ1 ÿ a�2i (as de®ned above), diffraction patterns

from perturbed lattices are similar in the sense that peaks

extend out to approximately the same scattering angle, irre-

spective of the values of other parameters of the disorder. It

therefore makes sense to parameterize the problem in terms

of �. The signi®cance of � is illustrated in Fig. 4 which shows

diffraction patterns from generalized paracrystals (left) and

perturbed lattices (right) with � � 0:05 and values of �nc and �
as shown. The overall diffraction is similar in all of these plots,

detailed differences being in the shapes of the peaks. In the

®gure, �nc decreases from top to bottom for the generalized

paracrystal and � increases from top to bottom for the

perturbed lattice, so that for both models the degree of

correlation between the distortions at adjacent sites increases

down the ®gure. When plotted in this way, the similarities

between the two models become quite apparent. We therefore

set �pc � �pl � � to obtain similar diffraction by the two

models.

A second parameter (aside from �) is required for each

model, and it is convenient to use R for the generalized

paracrystal (as de®ned above) and � for the perturbed lattice.

Writing (6) and (14) in terms of these parameters gives

Ipc�u� � N � 2
XNÿ1

j�1

�N ÿ j� exp ÿ2�2u2�2 2R� j

2R� 1

� �� �
� cos�2�uaj� �26�

and

Ipl�u� � N � 2
XNÿ1

j�1

�N ÿ j� exp ÿ2�2u2�2 1ÿ � j

1ÿ �
� �� �

� cos�2�uaj�: �27�

Inspection of (26) and (27) shows that differences are due to

the different j dependences of the factors in the brackets in the

exponential functions. The question is, can the diffraction by

the two models be made similar by appropriate choices of �
and R? To answer this question, diffraction patterns were

calculated using (26) and (27), and values of � and R deter-

mined that make the diffracted intensities for the two models

as close as possible.

To conduct such an analysis, it is necessary to consider the

range of parameter values that are relevant in practice so that

the results apply to a wide range of real systems. Measure-

ments based on the paracrystalline model of disorder in some

polymer systems, glasses and alloys show values of � varying

between about 0.01 and 0.15 (BaltaÂ -Calleja & Hosemann,

1980). Experiments also show that the sizes of disordered

crystallites usually satisfy the so-called `�� rule', N � ��2=g2

(BaltaÂ -Calleja & Hosemann, 1980), where g is the standard

deviation (normalized to the average spacing) in the para-

crystalline model (with only cumulative disorder) and

0:1<� ��<� 0:2. We associate g with � and, for the values of �
described above, a representative range for N is 5<N< 50

and we consider N in this range. Since larger crystallites tend

to have smaller distortions, the maximum value of � that we

consider decreases with increasing N (see the caption to Fig.

5). Since some systems exhibit mainly uncorrelated disorder

and others highly correlated disorder, we consider a wide

range of values of R to cover `®rst-kind-dominated' and

`second-kind-dominated' disorder, and corresponding values

of �.

For ®xed values of � and N in the ranges described above, R

was ®xed at different values and a search made for the value of

� that minimizes the normalized r.m.s. difference � between

the intensity diffracted by the two models, where

Figure 3
The dependence of �pc 2

k and �pl 2
k on k for (a) the general case, (b)

uncorrelated disorder, (c) highly correlated disorder and (d) the
construction for equation (24).



�2 � Rumax

0

�Ipl�u� ÿ Ipc�u��2 du
Rumax

0

I2
pl�u� du

�
�28�

and umax � 1=2� is a value of u beyond which most structure in

the diffraction pattern has died out. This gives relationships

between � and R, for different values of � and N, that make

diffraction by the two models as similar as possible. The results

of these calculations are shown in Fig. 5. The relationships

between the � and R that minimize � are shown at the top of

the ®gure (a) and the minimum difference �min between the

diffraction patterns is shown as a function of R at the bottom

of the ®gure (b). Note that R is plotted on a logarithmic scale.

The curves are for the different values of N as shown and for

the values of � listed in the ®gure caption. Note ®rst that � is

small �<4%� for N � 5 and 10 but is larger for N � 20 and 50,

particularly for R close to 1. Hence, for small values of N, the

two models give almost identical diffraction patterns (for

appropriate values of R and �). For larger values of N, the

diffraction patterns are still fairly similar although the differ-

ences are more signi®cant for R � 1. A second notable feature

of Fig. 5 is that, for ®xed N, the curves for the different values

of � are practically identical. The resulting relationships

between � and R are therefore independent of �.
In an attempt to ®nd a single empirical relationship between

� and R that describes the curves in Fig. 5(a), equation (25)

with � constant (independent of N) was ®tted to the curves by

varying �. This gave a remarkably good ®t. The ®t was further

improved by modifying (25) to the form

� � Na

Na � bR
; �29�

and this function was found to ®t the curves in Fig. 5(a) almost

exactly with a � 0:88 and b � 5:7. The ®t of this function is

shown by the circles in Fig. 5(a). Equation (29) therefore gives

an accurate empirical relationship between � and R such that

the two models give similar diffraction patterns. Examples of

diffraction patterns from the two models based on (29) are

shown in Fig. 6, for N � 10 (a, b, c) and for the `worst case'

(largest �min; N � 50, R � 2) in (d), for the values of R listed

in the ®gure caption. The patterns in (a) and (c) are indis-

tinguishable, in (b) the differences are quite small, and even in

(d) they are quite small. This demonstrates that the diffraction

patterns are almost identical when the

statistics of the two models satisfy (29).

We attempted to improve the ®t between

the two patterns for the `worst case' as

follows. Inspection of the patterns (shown

again in Fig. 7a) shows that the single value

of N results in ripples around the peaks that

distort some of the peak shapes. In practice,

however, mosaicity, a range of crystallite

sizes and X-ray beam spread smear out

these ripples. The effect of this is shown in

Fig. 7(b) in which the diffraction patterns

have been convolved with a Gaussian of

standard deviation 0:01 to represent the

smearing. The patterns in Fig. 7 have not

been rescaled after smearing so that differ-

ences between the two models can be

properly compared. Note also that the

vertical scale has been expanded (clipping

some of the ®rst peaks) so that the small

differences between the patterns are more

evident. The smearing increases the simi-

larity between the two patterns but the

effect is small with �min being reduced only

from 0:15 to 0:14. The assumption that

�pc � �pl gives similar diffraction patterns is

clearly a good one for most of the cases

considered since small values of �min are

usually obtained. The effect of allowing

�pc 6� �pl was investigated for the `worst

case'. This was done by ®xing �pc � 0:05 and

varying � as well as �pl to ®nd the minimum

value of � (after smearing the diffraction

patterns as described above). This reduced

�min to 0:09, with � � 0:77 and �pl � 0:06.

The resulting diffraction patterns are shown
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Figure 4
Diffraction patterns from (a) generalized paracrystalline lattices and (b) perturbed lattices for
N � 10, � � 0:05 and values of �nc and � as shown.
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in Fig. 7(c). Relaxing the constraint �pc � �pl therefore does

improve the match between the two diffraction patterns in the

`worst cases', although the improvement is not dramatic.

Remaining differences between the two diffraction patterns

are due to differences in the distributions of peak heights and

widths with scattering angle (Fig. 7c) and are a result of the

fundamental different statistical properties of the two models.

5. Discussion

The paracrystal and the perturbed lattice are two of the main

models used to describe aspects of disordered crystalline

materials. Each model has advantages and disadvantages. The

paracrystal is conceptually easy to understand, is well de®ned

in one dimension, has been widely used to analyze diffraction

data from disordered materials but is not usefully general-

izable to more than one dimension. The perturbed lattice,

although maybe not quite as intuitive as the paracrystal

initially, leads to a simpler model of a disordered lattice (due

to its being de®ned relative to a ®xed reference lattice) and its

diffraction, is more easily generalized to more than one

dimension, but has not yet seen as much application as the

paracrystal.

A detailed comparison of the two models has been

presented. If noncumulative (thermal) disorder is added to the

paracrystalline model, then the two models share common

features, both being able to represent a variety of disorder

between uncorrelated and highly correlated distortions. The

models are not identical because of different distributions of

the variances of the intersite distances

(Fig. 3). Despite this, an empirical rela-

tionship between the parameters of the

two models has been determined that

makes their diffraction patterns very

similar for typical distortions and crystal-

lite sizes. This leads to essentially identical

diffraction patterns if the crystallites are

small or for large crystallites if either

cumulative or noncumulative disorder

dominates. For larger crystallites and

similar degrees of cumulative and noncu-

mulative disorder (R � 1 or � � 0:6), the

patterns are not identical but the differ-

ences between them are quite small.

The similarity of the diffraction patterns

from the two models indicates that

diffraction data are not able to tell one if a

particular material under study is better

described by one model than the other.

Although the paracrystal has seen the

most application in analyzing one-dimen-

sional disordered systems, the results

presented here indicate that use of the

perturbed lattice would be just as, and

probably more (since it includes the

`generalized' paracrystal), satisfactory.

Figure 6
Diffraction patterns from generalized paracrystalline (full line) and perturbed (dashed line)
lattices with �pc � �pl � 0:05 and � and R related by (29) for the values (a) N � 10, R � 0:1,
� � 0:93, (b) N � 10, R � 1, � � 0:57, (c) N � 10, R � 10, � � 0:12 and (d) the `worst case'
N � 50, R � 2, � � 0:72.

Figure 5
(a) The relationships between � and R that minimize � and (b) the
minimum r.m.s. difference �min between the intensity diffracted by the
generalized paracrystal and perturbed lattices. The different sets of
curves are for the different values of N as shown. The values of � are for
N � 5: � � 0:02, 0.05, 0.10, 0.15; for N � 10: � � 0:02, 0.05, 0.10, 0.15; for
N � 20: � � 0:01, 0.02, 0.05, 0.10; and for N � 50: � � 0:01, 0.02, 0.05,
0.10. Circles show the function given by (29).



Since the perturbed lattice is more easily generalized to more

dimensions, these results lend support to use of the perturbed

lattice model for describing disorder in multidimensional

systems.

APPENDIX A
Evaluation of equation (4)

Depending on the values of j and k, some of the d
pc
l appearing

in the ®rst average in (4) may be identical and therefore not

independent. The summation over k is separated into two

parts so that the d
pc
l are independent in each, giving

Ipc�u� � N � exp�ÿ4�2u2�2
nc�
PNÿ1

j�0

Pjÿ1

k�0

exp�i2�ua� jÿ k��
�

� exp i2�u
Pj

l�k�1

d
pc
l

� �� �
� PNÿ1

k�j�1

exp�i2�ua� jÿ k�� exp ÿi2�u
Pk

l�j�1

d
pc
l

 !* +#
:

�30�

The terms inside each average in (30) are now each products

of independent variables of the form exp�i2�ud� and the

averages can therefore be evaluated, giving

Ipc�u� � N � exp�ÿ4�2u2�2
nc�

� PNÿ1

j�0

Pjÿ1

k�0

exp�i2�ua� jÿ k�� exp�ÿ2�2u2�2
pc� jÿ k��

�
� PNÿ1

k�j�1

exp�i2�ua� jÿ k�� exp�ÿ2�2u2�2
pc�kÿ j��

)
:

�31�
The two summations over k can now be combined, giving

Ipc�u� � N � 2 exp�ÿ4�2u2�2
nc�
PNÿ1

j�0

Pjÿ1

k�0

exp�ÿ2�2u2�2
pc� jÿ k��

� cos�2�ua� jÿ k��; �32�
and adding together terms of the same � jÿ k� gives

Ipc�u� � N � 2 exp�ÿ4�2u2�2
nc�
PNÿ1

j�1

�N ÿ j� exp�ÿ2�2u2�2
pc j�

� cos�2�uaj�: �33�

APPENDIX B
Perturbed lattice correlation coefficients

The relationship (11) for the correlation coef®cient between

kth nearest neighbors is a property of Markov chains that can

be demonstrated as follows. Since we assume that only random

variables at adjacent sites interact, the conditional density

satis®es

P�dj djÿ1; djÿ2; . . . ; d0� � P�dj

�� ��djÿ1�: �34�
This is the Markov property, and the sequence �d0; d1; . . .�
forms a Markov chain (Papoulis, 1991). Consider the random

variables dj and dj�kÿ1 (k> 1). The dj and dj�kÿ1 are jointly

normal, and the correlation coef®cient between them is

denoted by q. The conditional density P�dj�kÿ1jdj� is therefore

P�dj�kÿ1jdj� � P�dj�kÿ1; dj�=P�dj�

� 1

�2��1=2��1ÿ q2�1=2
exp ÿ �dj�kÿ1 ÿ qdj�2

2�2�1ÿ q2�

" #
:

�35�
Using the chain rule for conditional densities (Papoulis, 1991)

and (34), the joint density P�dj�k; dj�kÿ1; dj� can then be

written as

P�dj�k; dj�kÿ1; dj� � P�dj�kjdj�kÿ1�P�dj�kÿ1jdj�P�dj�; �36�
which can be marginalized to give the joint density

P�dj�k; dj� �
R1
ÿ1

P�dj�kjdj�kÿ1�P�dj�kÿ1jdj�P�dj� d dj�kÿ1:

�37�
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Figure 7
Diffraction patterns from generalized paracrystalline (full line) and
perturbed lattice (dashed line) models for the `worst case'
�N � 50;R � 2; �pc � 0:05� for (a) �pl � �pc without smearing, (b)
�pl � �pc with smearing, and (c) �pl 6� �pc with smearing, as described in
the text.
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Since the perturbed lattice is stationary and P�dj� is normal,

(35) can be used to evaluate (37) as

P�dj�k; dj� �
1

�2��3=2�3��1ÿ �2��1ÿ q2��1=2

�
Z 1
ÿ1

exp ÿ �dj�k ÿ �dj�kÿ1�2
2�2�1ÿ �2�

" #

� exp ÿ �dj�kÿ1 ÿ qdj�2
2�2�1ÿ q2�

" #
exp ÿ d2

j

2�2

� �
d dj�kÿ1:

�38�
Expanding the arguments of the exponentials, completing the

square of the terms involving dj�kÿ1 and changing the variable

of integration allows (38) to be written in the form

P�dj�k; dj� � �2�3=2�2�1ÿ �2q2�1=2�ÿ1

� exp ÿ d2
j�k ÿ 2�qdj�kdj � d2

j

2�2�1ÿ �2q2�
� �

�
Z 1
ÿ1

exp�ÿ�xÿ b�2� dx; �39�

where b is independent of x. Evaluating the integral gives

P�dj�k; dj� �
1

2��2�1ÿ �2q2�1=2
exp ÿ d2

j ÿ 2�qdjdj�k � d2
j�k

2�2�1ÿ �2q2�
� �

;

�40�
so that the correlation coef®cient is �q. Equation (11) follows

by mathematical induction and the fact that sites separated by

ÿk have the same statistics as those separated by k.
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